

FACULTY OF ENGINEERING DEPARTMENT OF MINING ENGINEERING

FINAL YEAR PROJECT REPORT DESIGN AND CONTRUCTION OF A MODIFIED FUME EXTRACTOR FOR SMALE-SCALE MINERS

By:

ERIMA SWIZEN OGENA

This Thesis is submitted to the Faculty of Engineering in Partial Fulfilment of the Requirement for the Award of the Degree of Bachelor of Mining Engineering of Busitema University.

JANUARY 2022

Abstract

This review is a summary of different aspects of the design and fabrication of a modified fume extractor. It covers different fume extractor designs and materials used for construction, applications of the fume extractors and the social and environmental effects of the fumes.

Fume extractors are the devices, which clean the air in surroundings from the unwanted and undesired particles from air. These have multiple uses in multiple fields. Consider living in an environment with consistent fumes tendering from all the sides residing in the lungs not knowingly, about their type and components that they are made up of. Almost all of the industries operating today are in dire need of fume extractors not only for the safety of their employees but also for the EPA standards set by the governments(Mohamed and Abdelakher, 2021).

The industrial sector has developed fume extraction systems to address the issue of air pollution because the EPA demands good air quality. The portable/mobile fume extraction system, stand-mounted fume extractors, and wall-mounted or fixed fume extraction systems are some examples of these systems. However, these fume extractors frequently operate ineffectively because the majority of them have an angle of 90°, which means that many fumes will still be present in the surrounding area.

The modified fume extraction system is an enclosed system which would be able to catch maximum amount of fume and dust particles that are generated during the steel wool acid digestion process.

Declaration

I hereby declare that the content in this project report is my original work from intensive research, practical, consultation and all references made to the works of other persons have been duly acknowledged therefore it has never been submitted to any university or institution for any award to the best of our knowledge.

ERIMA SWIZEN OGENA BU/UG/2018/2113

Signature Date 15th | 01/2023

Approval

This is to certify this work was carried out under strict supervision and has been approved for submission to the department of Water and Mining Engineering Busitema University in the partial fulfilment of the requirement of the award of the bachelor of Science in Mining Engineering

Etypsons 16 01 23 SUPERVISORS

Dr Ddumba Joseph Lwanyaga

Mr. Nuwareba Edison

Dedication

To my parents and my uncle Dr. Leti Michael Natal, who through their financial and moral support were the source of motivation and the support to attaining my education, I dedicate this project.

Acknowledgement

I am overwhelmingly thankful to the almighty God for his abundant provision and the love for me all through the years of our life. My sincere appreciation goes towards our supervisors, Dr Ddumba Joseph Lwanga and Mr. Nwareba Edison and for the guidance, assistance advice you gave us towards the completion of this work. Finally, my heartfelt thanks go to my family and friends for the financial, spiritual and moral support they rendered to me during this period of doing this work. May God reward them abundantly!

Table of Contents

Α	Abstr	act		2
Dec	clara	tion.	Error! Bookmark not	defined.
App	prov	al	Error! Bookmark not	defined.
Dec	licat	ion		v
Ack	cnow	ledg	gement	vi
1	CH	IAPT	TER ONE: INTRODUCTION	11
1	.1	Bac	ckground of the study	11
1	.2	Pro	blem statement	10
1	.3	Obj	jectives of the study	11
	1.3	3.1	Main objective	11
	1.3	3.2	Specific objective	11
1	.4	Jus	tification of the study	11
1	.5	Sco	ope of the study	11
	1.5	5.1	Conceptual scope	11
2	CH	IAPT	ΓER TWO: LITERATURE REVIEW	12
2	2.1	Fur	me extraction technology	12
2	2.2	Ber	nefits of fumes extraction systems	12
2	2.3	Typ	pes of fans	13
2	2.4	The	e Fan Laws	15
2	2.5	Cla	assification of fume extraction systems	15
	2.5	5.1	Wall mounted or fixed fume extractors	15
	2.5	2	Portable Fume Extractor	16

	2.5	5.3	Table Top Fume Extractor	16
	2.5	5.4	Exhaust fume extraction System	17
	2.5	5.5	Stand Mounted Fume Extractor	17
	2.6	Sel	ection Criteria for Fume Extractor	18
	2.7	Red	ducing Exposure to toxic Fumes in Work Place	18
	2.8	A r	nodified fume extraction system	19
	2.9	Wo	orking principle	20
	2.10	(Chemistry behind Fumes and Reactions	20
	2.1	0.1	Iron reaction with conc sulphuric acid	20
	2.1	0.2	Reaction of sulphur dioxide with water	21
	2.1	0.3	Properties of Sulpur dioxide	21
	2.1	0.4	Sulphur dioxide in Air Hazards	21
	2.1	0.5	Iron reaction with conc nitric acid	21
	2.1	0.6	Reaction of Nitrogen dioxide gas with water	21
	2.1	0.7	Properties of Nitrogen dioxide gas	21
	2.1	0.8	Nitrogen dioxide in Air Hazards	22
3	CH:	IAP7	TER THREE: METHODOLOGY OF THE STUDY	23
	3.1	Intı	oduction	23
	3.2	Co	nceptual Diagram	23
	3.3	Fur	nctions of the major Components of the machine	23
	3.4 Sp		ecific objective one; characterizing the fumes	24
	3.5	Spe	ecific objective two: to design the components of the prototype	24
	3.5	5.1	Required Fan Volume Capacity	24
	3.5	5.2	Design of the components	25
	3.5	5.3	Components	25
	3.5	5.4	Motor Sizing.	29
	3.6	Ob	jective three: To fabricate, assemble and test the prototype	30
	3.6	5.1	Material selection	30
	3.6	5.2	Fabrication of the components	30
	3.6	5.3	Assembly of the prototype	30
	3.6	5.4	To test the performance	31
	3.7	Spe	ecific objective four; Carrying out an economic analysis	31
	3.7	7.1	NPV	31
	3.7	7.2	Profitability index.	31
	3.7	7.3	Payback period method.	32

4	RE	SULTS AND DISCUSSION	33
	4.1	Ventilation requirement calculation	33
	4.1	.1 Gas measurement	33
	4.1	.2 Temperature variation measurement	33
	4.2	Design Calculations	33
	4.2	.1 Required Fan Volume Capacity	33
	4.2	.2 Centrifugal blower sizing	34
	4.2	.3 Sizing the Digestion tank	35
	4.2		
	4.2		
	4.2	.6 Results for blower analysis	37
	4.3	Assembly of the prototype	38
	4.3	.1 To test the performance	38
	4.4	Economic analysis of the prototype	39
5	CO	NCLUSIONS AND RECOMMENDATIONS	42
	5.1	5.1 CONCLUSIONS	42
	5.2	RECOMMENDATIONS	43
A	ppendi	ices	45
T.	ist of f	ioures	
	_	-1 showing working principle of a blower	
	_	-2 Wall mounted or fixed fume extractor3 portable fume extractor	
	_	-4 . Table top fume extractor	
	_	-5 Exhaust fume	
	_	-6 Stand mounted fume extractor	
F	igure 3	-1 Conceptual diagram	23
	_	-1 Conceptual diagram	
	_	-2 digestion tank	
	_	-3 cover	
	_	-4 cover	
F	igure 0	-5 impeller	46

Table 2-1. Centrifugal fans	13
Table 2-2. Axial flow fans	14
Table 2-3. The fan laws	15
Table 3-1. Material selection	30
Table 4-1 Showing Gas concentrations before using a modified fume extractor	33
Table 4-2 showing temperatures	
Table 4-3 showing results of machine analysis	37
Table 4-4 showing first test results	38
Table 4-5 showing second test results	38
Table 4-6 showing budget	39
Table 4-7 showing maintenance costs	40

ACRONYMS

ASGM – Artisanal Small-scale Gold Miners

EPA – Environmental Protection Agency

WHO – World Health Organization

UNEP – Uganda National Environment Protection

PM – Pollutant Measured

HCS – Hazard Communication Standard

NCDs – Non communicable Diseases

OHSA – Occupational Safety and Health Administration

1 CHAPTER ONE: INTRODUCTION

1.1 **Background of the study**

Fume extractors are the devices, which clean the air in surroundings from the unwanted and undesired particles from air. These have multiple uses in multiple fields. Consider living in an environment with consistent fumes tendering from all the sides residing in the lungs not knowingly, about their type and components that they are made up of. Almost all of the industries operating today are in dire need of fume extractors not only for the safety of their employees but also for the EPA standards set by the governments(Mohamed and Abdelakher, 2021).

The typical particle size, which is roughly 10 microns, can enter the human body and lungs, posing serious health risks, according to the WHO. Clean air is a fundamental human right. Air pollution is the biggest environmental health issue and a major contributor to non-communicable diseases (NCDs) like heart attacks and stroke; therefore, it still poses a serious threat to people all over the world. According to the World Health Organization, there are 7 million premature deaths every year due to the combined effects of industrial and household air pollution— with millions more people falling ill from breathing polluted air. More than half of these deaths are recorded in developing countries(WHO, 2021).

In Uganda, an estimated 18,000 premature deaths every year occur due to air pollution caused by emission of poor quality air to the environment(UNEP, 2017).

Air pollutants measured include $PM_{2.5}$ and PM_{10} (particles with an aerodynamic diameter of equal or less than 2.5, also called fine, and 10 micrometre respectively), ozone (O₃), nitrogen dioxide (NO2), carbon monoxide (CO) and sulfur dioxide (SO2)(*WHO*, 2021).

The industrial sector has developed fume extraction systems to address the issue of air pollution because the EPA demands good air quality. The portable/mobile fume extraction

REFERENCES

Cyanide, H. (no date) 'Threshold Limit Values and Flammability of Some Commonly Used Gases', pp. 3–5.

Fans - Volume Flow, Pressure Head and Power Consumption vs. Air Temperature and Density (no date). Available at: https://www.engineeringtoolbox.com/air-density-temperature-fan-capacity-d_144.html (Accessed: 25 November 2022).

Laitinen Sirpa, R.T. (2016) 'Exposure to dangerous substances in the waste management sector', *Oshwiki*, pp. 1–10.

Mohamed, O. and Abdelakher, A. (2021) 'Smart fume extractor'.

Omoregie, M.J., Akilaki, T.I.F. and Kalu, K.E. (2019) 'Design and fabrication of a mobile fume extractor', *Nigerian Journal of Technology*, 38(1), p. 112. doi:10.4314/njt.v38i1.15.

UNEP (2017) 'Uganda Air Quality Policies', pp. 1–3.

What are the WHO Air quality guidelines? (no date). Available at: https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines (Accessed: 22 July 2022).